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Scalar and Vector fields

Differential operators
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Review Euclidean Space-

· We work in n-dimensional space X = (X, , Xe, .
. . ., Xn)

· 2D : v = (x1 , x) = (X ,y)

· 3D : V = (x 1, x2 , xz) = (x , y, z)

n = 2 h = 3
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·Scalar/dot product
X = (x , , . . ., Xu) y = (y,, . . ., Yn)

xoy = (X , y) = x , y , + .. . + XnYn

· Cross product (3D)

X = (x,, xz ,
x3)

y = (y1, (2173)

x = y = (xzye - xyyz , Xy ,
- x,% , xya

- xzy)



I
. 2 . ↓

review Scalar fields

A scalar field

f : (R"- > 1R
,
X -> f(x)

assigns a scalar value to every point

Examples : temperature,
chemical concentration

, pressure
probability distributions

Example F : 12 -> 1
,
x > sin( xi + xz)
-

g
: /3- IR

,
X # Fi + < + X

Euclidean norm



Given a scalor field F : IR" -> IR,

the level set of the value CIR is

set

EX - (r" = f(x) = c 3 notation

Example Consider the scaler field

h : " -> 1
,
X +o xi + x2 + x3

Level set of c = 1 :

Sx + (3 = xi + xi + x3 = 13

"
unit sphere around origin



I . 3 Review Vector fields
-

A rector field assigns a rector to each point in space

F : IR" -> IR", X 13 (F ,
(x), - . .

.. Fu(x)

Examples : velocity ,
acceleration

, force fields ,
floid flow

Examples : F : / -> 12
,

(x11x2) + (-x2 ,
X

,)

6 : MP-> /R3
,

(x1152153) # (2x 1 Xa + xs, Xcxxs)
How to visvulize vector fields ?



Example A(x 1, x2) = (3 , 1) Example B(x2) = ( X .*
Xz

·
-

-

· -↑ I (1 , 0)

-13X
,

Constant rector field
·-
-

(constant flow(

rotational rector field

(circular flow)
counterclockwise orientation

mag
nitude increases away

from the origin



Example : ((7 ,, x) = (x , , xz)

↓ source vector field

X
↑
- S describes a flow &

L j · (1 , 1) away from the origin
↑T
-

↓ Y
· (1 ,

- 1)X ↓
-

We have even scalar fields F : IR" -> IR

rector fields F : IRN -> I "

nx H

similarly matrix fields E : IR" -> I

We have discussed fields over 1" . More generally, over open sets
en IRh



P. Review : Gradient
,

Hessian
, Laplacian

If F : IR" -> IR is a scala field,
then the

gradient is the vector field
-

gradf = (d ,

f
, Exf, ....,

Exaf)
intereste

Autation: Using the nabla symbol A

[m==between columnrectors



Example
f(x ,, x) = xi + X

,
x

grad f(x, xz) = (3x + x
,
x: 5x2)

g(x ,, x2) = x , xz

grad y (x , xz) = (x2 ,
x ,)



· Geometrically , grad f points in the direction of the

steepest increase of f

· The directional derivative of f in direction veID" is :

-

Duf = grad for = Ex
,
f . v,

+ . . .. + Genf - Un

The value Dof tells us how f changes
as we more in direction v

· Along any
level set line

,

the gradient is orthogonal



Example f(x ,, xz) = xi + x
-

gradf(x ,, xa) = (2x, , 2x2)

Level set of c = /
( ,
=)

-
·
le

(2 ,0)#



If F : IR" -> IR is a scular field,

then the Hessian of F is a mutrix field

D2f =

G
,
6

,
7 b, 7 .... Gibuf

Gad,f Getaf --
--

SI
Gua ,

F -

-

- - Andnt
I-I S

· The Hessian is symmetric if all 2nd derivatives are
continuous

· Physical/geometric interpretation contains information on the

corrature of the scalar field



If F : /" -> IR is a scular field, then the

Laplacian of F is the scular field :

At = q Gidif = Git ,
f + Gebef + - .. + Duf

i = 1

· Som of the diagonal entries of the Hessian

· Physically velevant in modeling diffission
Poisson problem : - Su = f (differential equation

T T
known

unknown scular field
scala field



Example , f(x , y , z) = xy3ez-

grad f(x) = (yez , 3xyez , xyez)

Gxtxf = 0, Exbyf = 3yez ,

2xbzf = yez

Gybyf = Gxyez G627 = 3xyet
, Gatzf = xyez

I
O 3jet yez

I Af = 0 + 6 xyez + xyyz
Df = 3yet G xyez 3xyez

= exy(6 + y
yez 3xyez xyez

[



Example : f(x) = 1x1)= X = /"
-

First devivatives

↳ f() = Gi(x)* = Ex)*. 2xi
· -rute-

&-
chain &

= x=
Y
derivatives of ↑ 11XII

composed
functions

L - Notice the singularity at X = 0
- -

Not removable

grad f(x) = ( " )=
2

unit rector

length =



n = 2 NB :

· gradient is outhogonal- to the level sets

· it points in the direction- of steepest increase

second partial derivatives off(x) = 111
.

Case distinction

26 ;
f(x) = Gi() = Gi(xi - mx(+ ) = ( + + = (inx)

1x/12

= + +xi = En-IIXII



2j6i f(x) = (i)) = 0 + xi(; 11x1)
j + i =X. r =i
All partial derivatives of order 2

,
we can build the Messian matrix

We want the Laplacian too :

1 f(x) = 20tf(x) = =-i = 1

=
- =
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5 Livergence
--

Given a rector field F : IR" -> IR"
,

X r ( F,
(), . . . . Fu(x)

the adivergence is the rector field

divF = &
,

WiFi = GF,
+ GaFz +... + GyEn

· Formally ,
divF = NoF

· The Loplasian is the divergence of the gradient
: Af = divgradf

Example

div(xix2 y xz , ets) = 2x , xz + 3x2 + e



E. 6 Rotation or curl of rector fields

If F : IB3- > M is a 3D rector field
,
F = (F E2 . Es),

then the core/rotation is a 3D rector field

G F3 - GaFz
curlF = rot F =

I
-

&23F, - G
, Fz

2
, F2 - 82F,

Formally , corl ·F = x F

Only works in 3D. There is a ratation in 2D :



If F : /R
*
-> IR2 is a 2D vector Field

,
then the

rotation/corl of F is a scular field

curlF = rot F = &
, F2-GzF

Motivation : We formally extend the rector field with a third coordinate
-

E3 = O
.

22F3GzFz O-

F = (E) = coreF = (2F, - 2
, 5) = I g I2

, F - G2F,
-F

,
+ G

,
Fa

The ID curl is a restriction of the 3D corl



Examples : Divergence measures the presence of sinks and sources

Rotation measures the presence of a spin

A(x ,, x) = (x ,, x)

·
div A(x

,
x) = G

,
x ,

+ Gx = 2

↑ rot A(x, x2) = G
, x - 2X

,
= 0

- rotation-free

I



B(x ,, x) = (- xa
,
x

, ) div B(x,, xz) = G
,
x - G

,
x

,
= 0

divergence - free

&
rot B(x1, x2) = G

,
x

,
- (2)- x)

F = 2


